
cairo.API
Basic information
Dropshipping
Documentation

Basic information
cairo.API
The cairo.ERP system provides its clients with API functionality based on JSON communication over
the HTTP POST method. Unlike classical REST architecture, access to functions is done by invoking
named operations passed in the request body. All data — both input and response — is transferred
in JSON format.

The API allows parameters (such as session identifiers) to be sent in the request body, eliminating
the need to pass them in the URL or headers.

All communication is done through a single endpoint:

POST https://api.example.com/ws/<method name>

Example: retrieving system version:

Response:

XML communication is no longer supported

POST /ws/getVersion HTTP/1.1
Host: api.example.com
Content-Type: application/json; charset=utf-8
SOAPAction: "getVersion"

{
 "getVersion": {}
}

{
 "getVersionResponse": {
 "ownum": "123",
 "verFull": "5.645.15127 2024-09-27",
 "version": "dbfd2 5.645.15127 2024-09-27 JSON"
 }

https://api.example.com/ws

Request structure
Every request should follow a consistent structure:

Example:

Response structure
A valid response:

Example:

}

{
 "<operationName>": {
 <inputParameters>
 }
}

{
 "getProductsInfo": {
 "sessionId": "abc123",
 "productList": {
 "product": [{
 "id": "0006VI"
 }, {
 "reference": "144 666"
 }]
 }
 }
}

{
 "<operationName>Response": {
 <outputData>
 }
}

{
 "getVersionResponse": {

Error handling
In case of an error, the server returns an HTTP 500 response containing an error object in JSON
format:

Communication protocol
Access to the API is provided via an HTTP(S) connection to the server. All requests must include the
header: Content-Type: application/json; charset=utf-8 . Communication is stateless — sessions are
identified via parameters passed in the request body.

API access
To access the API, you need to know the target host and obtain API credentials. Please contact your
account manager to obtain access data.

Language version
By default, all messages returned from the API are in the language configured in the cairo.ERP
system. To receive responses in a specific language, include the appropriate languageId during the
doLogin method call.

Session handling
Accessing API methods requires a successful login. Authentication is performed via the doLogin
method, which requires a login and an MD5-encoded password. The doLogin method returns a
unique session key (sessionId), which must be included in every subsequent API request.

Example: login and session usage

 "ownum": "123",
 "verFull": "5.645.15127 2024-09-27",
 "version": "dbfd2 5.645.15127 2024-09-27 JSON"
 }
}

{
 "error": {
 "code": "ERR_SESSION",
 "msg": "Invalid session identifier"
 }
}

Login request:

Response:

Subsequent request using session:

Session lifecycle
A session remains active for 10 minutes of inactivity.
The maximum lifetime of a session is 3 hours from login, regardless of activity.

POST /ws/doLogin HTTP/1.1
Host: api.example.com
Content-Type: application/json
Accept: application/json

{
 "doLogin": {
 "userLogin": "test",
 "userPassword": "289dff07669d7a23de0ef88d2f7129e7"
 }
}

{
 "doLoginResponse": {
 "sessionId": "eP3cFozcI3pnyq9wO3Fa7vWg0H7CthI0029736_D"
 }
}

{
 "getProductsInfo": {
 "sessionId": "eP3cFozcI3pnyq9wO3Fa7vWg0H7CthI0029736_D",
 "productList": {
 "product": [
 { "id": "0006VI" },
 { "reference": "144 666" }
]
 }
 }
}

After expiration, the server returns error code ERR_SESSION . In such cases, the doLogin
method must be called again to obtain a new session key.
Explicit logout is not required.

Limits and restrictions
The API is subject to the following limits and constraints:

Concurrent sessions: By default, a single application may have up to 30 active
sessions. Attempts to create additional sessions beyond this limit will result in an error.
Session timeout:

10 minutes of inactivity,
3 hours from login (absolute timeout).

Concurrent connections: Each system installation has a limit on the number of
concurrent API connections. The value of this limit depends on the system configuration
and may be set individually.
Exceeding available connections may result in requests being rejected until resources are
released.

PHP example
The following example demonstrates how to easily integrate with cairo.API using PHP. The ws_call()
function serves as the main interface for WebService communication. It automatically handles
session management, login, and session renewal in the event of an ERR_SESSION error.

Thanks to this, you can call any API method without manually managing session state — just call
ws_call() with the method name and parameters.

<?php

function ws_call($method, $params = [])
{
 static $sessionId = null;
 static $host = 'http://127.0.0.1:7888/';
 static $credentials = [
 'userLogin' => 'test',
 'userPassword' => '289dff07669d7a23de0ef88d2f7129e7', // MD5 hash of password
];

 // Internal request function
 $call = function($method, $params) use ($host) {
 $request = [$method => $params];

 $requestStr = json_encode($request);
 $ch = curl_init();
 curl_setopt_array($ch, [
 CURLOPT_URL => $host,
 CURLOPT_POST => true,
 CURLOPT_POSTFIELDS => $requestStr,
 CURLOPT_RETURNTRANSFER => true,
 CURLOPT_HEADER => true,
 CURLOPT_HTTPHEADER => [
 'Content-Type: application/json',
 'Accept: application/json',
]
]);

 $responseStr = curl_exec($ch);
 $error = curl_error($ch);
 $headersSize = curl_getinfo($ch, CURLINFO_HEADER_SIZE);
 curl_close($ch);

 if ($error) {
 echo "CURL ERROR: $error\n";
 return null;
 }

 $responseBody = substr($responseStr, $headersSize);
 $response = json_decode($responseBody, true);

 echo "REQUEST:\n$requestStr\n";
 echo "RESPONSE:\n$responseBody\n";

 return $response;
 };

 // Login if no session yet
 if ($sessionId === null && $method !== 'doLogin') {
 $loginResult = ws_call('doLogin', $credentials);
 if (!isset($loginResult['doLoginResponse']['sessionId'])) {
 echo "Authentication failed.\n";
 return null;
 }

 $sessionId = $loginResult['doLoginResponse']['sessionId'];
 }

 // Add sessionId to params
 if ($method !== 'doLogin') {
 $params['sessionId'] = $sessionId;
 }

 // Perform request
 $result = $call($method, $params);

 // Handle session expiration
 if (isset($result['error']['code']) && $result['error']['code'] === 'ERR_SESSION') {
 echo "Session expired, retrying login...\n";
 $sessionId = null;
 return ws_call($method, $params); // retry after re-login
 }

 return $result;
}

// ==========================
// Example usage: getProductsInfo
$productList = [
 'product' => [
 ['id' => '0006VI'],
 ['reference' => '144 666']
]
];

$response = ws_call('getProductsInfo', ['productList' => $productList]);

if ($response) {
 print_r($response);
} else {
 echo "Request failed.\n";
}

Dropshipping
Dropshipping is a logistics model in which the seller accepts orders but does not store the products
or ship them directly. Instead, the orders are forwarded to the supplier, who prepares the shipment
and sends it to the final recipient. Depending on the chosen scenario of this process, the seller may
be responsible for reporting the shipment to the courier company (then the supplier communicates
with the seller to download the label for the package - scenario A) or directly the supplier (scenario
B).

Scenario A
In this arrangement, the vendor must provide the option of downloading labels for packages
prepared by the supplier. In the query, the supplier can provide the following information about the
package: order number, dimensions, weight, content. In response, the vendor must provide a label
in a PDF file, which will be placed on the package. Depending on technical conditions, there may be
technical restrictions regarding the maximum size of the label. For details, please contact the
supplier directly.

Note! This form of process requires each time the supplier's system to be adapted to the
vendor's IT solutions, so its implementation may be more time-consuming.

Example of a doOrderProducts query:

{ "doOrderProducts": {
 "sessionId": "*****************************",

https://help.cairo.pl/uploads/images/gallery/2025-04/xOFENkkVNjG2r4PB-zrzut-ekranu-2025-04-7-o-12-57-13.png

Scenario B
In this arrangement, the supplier is responsible for sending the package to the recipient. The
recipient's data must be transferred together with the order in the doOrderProducts method.
Additionally, depending on the arrangements between the seller and the supplier, the shipment
can be reported to the courier with the supplier's data (then it must be settled independently with
the seller) or the seller (the data must be entered into the supplier's system at the connection
configuration stage). In each arrangement, when ordering the goods, the seller should indicate the
route - i.e. the form of delivery to the recipient - together with the order (doOrderProducts method).

 "forceNewOrder": 1,
 "onlyFoundItems": 1,
 "newOrderInfo": {
 "externalId":"***********",
 "routeId":"******"
 },
 "productOrderList": {
 "productOrder": [{
 "tecidd":"350",
 "tecnum":"ADV184326",
 "quantity": 2
 }]
 }
}}

Note! Assuming that we are using couriers already integrated in the cairo.WMS system,
implementing communication in this form does not require modification of the system, only
its appropriate configuration.

List of methods suggested for use in Dropshipping:

doLogin

https://help.cairo.pl/uploads/images/gallery/2025-04/5gNzUKuAn7yX8tKk-zrzut-ekranu-2025-04-7-o-12-57-42.png

getProductsInfo
doOrderProducts
doOrderClose
getOrderStatus
getMyInvoices
getMyRoutes

Example of a doOrderProducts query for courier delivery:

Example of a doOrderProducts query for shipping to a collection point:

{ "doOrderProducts": {
 "sessionId": "*****************************",
 "forceNewOrder": 1,
 "onlyFoundItems": 1,
 "newOrderInfo": {
 "deliveryAddress": {
 "name":"**************",
 "street":"******************",
 "postcode":"*******",
 "city":"********************",
 "country":"**",
 "phone":"****************",
 "email": "**********************"
 },
 "externalId":"***********",
 "routeId": "******"
 },
 "productOrderList": {
 "productOrder": [{
 "tecidd":"350",
 "tecnum":"ADV184326",
 "quantity": 2
 }]
 }
}}

{"doOrderProducts": {
 "sessionId": "*****************************",
 "forceNewOrder": 1,
 "newOrderInfo": {

 "pickupPointAddress": {
 "name": "***************",
 "street":"*******************",
 "postcode": "**************",
 "city": "****************",
 "country": "*****",
 "phone": "*******************",
 "email": "******************************",
 "pickupPointId": "********************"
 },
 "externalId":"208755449",
 "routeId":"******"
 },
 "productOrderList": {
 "productOrder": [{
 "reference": "VK22 DENSO",
 "quantity": 4
 }]
 }
}}

Documentation
Documentation is available at:

https://api-ws.cairo.pl

https://api-ws.cairo.pl

